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Abstract-Natural convection within a vertical stack of long, inclined para~lelogrammic cavities isexamined 
numerically. An explicit, finite difference scheme for 2-dim. flow is formulated along with appropriate 
boundary conditions. Nusselt numbers are computed for several geometries, Prandtl numbers, Grashof 
numbers, and conductances between cavities. These analytical results provide a basis for comparison with 
data that have been obtained with ‘oneway’heat walls. The procedure also provides a basis for estimating the 
potential of such asymmetrical insulating structures; one conclusion is that conduction between cavities 

considerably reduces the asymmetry attainable in overall Nusselt number. 

NOMENCLATURE 

thickness of partition wall; 
specific heat at constant pressure; 
height of parallelogrammic cavity; 
gravitational acceleration ; 
Grashof number, O4 gj?( 7;, - T,)/(Ly’); 
thermal conductivity of partition wall; 
thermal conductivity of fluid ; 
dimensionless length of parallelogram, 
LID ; 
length of paraIlelogram ; 
coordinate normal to p-axis; 
Nusselt number as defined by eqn. (24); 
pressure ; 
Prandtl number, c&k,; 
local heat flux density; 
total heat flux defined by eqn. (21); 
Rayleigh number, Pr x Gr; 
ratio of conductances, (kb/b)/(k~jD); 
time ; 
temperature ; 
velocity in x- and y-direction 
respectively ; 
velocity in the direction normal to x = 
l/2 ; 
rectangular coordinates ; 
parallelogrammic coordinates. 

Greek symbols 

a, angle of inclination of partition wall ; 
P* thermal expansion coefficient of fluid ; 
At, time increment ; 
Ax, By, Ay, grid space in x-, y- and y-direction 

respectively ; 
vorticity function, a+a.v - au/ax 
ratio of Nusselt numbers, ~u(+)/~u(-~; 
quantity defined by eqn. (23); 

dynamic viscosity; 
kinematic viscosity ; 
fluid density ; 
stream function ; 
relaxation factor. 

Subscripts 

B, boundary wall ; 
cd, conduction only; 
cdv, conduction plus convection ; 
km, hot, cold and medium tem~rature 

respectively; 
. 

‘>.I, grid number in $- and x-direction 
respectively ; 

M,N, number of basic grids in x- and y’- 
direction respectively. 

Superscripts 
* 

(-t-h (-) 

new value of function after one step of 
time increment ; 
value when CI is positive and negative 
respectively. 

INTRODUCDON 

THERE is at the present time much interest in efficient 
use of energy. An insulating material that conducts 
heat one way but not the other would obviously be 
widely useful. A vertical stack of inclined cavities 
possesses such an asym~t~cal property, to a limited 
degree. This paper presents an analysis of such a stack 
of cavities, in which a fluid acts as a convector of 
thermal energy. 

Steady 2-dim. natural convection in rectangular 
enclosures with isothermal vertical walls has been 
extensively studied during the past two decades. 
Among the investigators, Batchelor [l] and Elder [2] 
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dealt analytically with long, vertical geometries, and 

Eckert and Carlson [3] investigated the problem 
ex~~mentally. Wilkes and Churchill [4], de Vahl 
Davis [S], and Quon (63 examined short, rectangular 
enclosures numerically. 

Convection in inclined rectangular cavities has been 
investigated numerically by Ozoe, Sayama and Chur- 
chill [7] and Catton, Ayyasawamy and Clever [8]. 
Dropkin and Somerscales [9], and Arnold, Catton and 
Edwards [lo] reported experimental data for inclined 
rectangular geometries. 

The studies listed above have two characteristic 
geometric features: Bows are 2-dim. in rectangular 
cavities; and, only single cavities are considered. 
Trefethen [l 1 J reports on a series of experiments with 
water in long, circular, inclined tubes. The ratio of 
length to diameter was large, varying from 50 to 500. In 
some, one end of the tube was heated and the other 
cooled while the tube was at various degrees of 
inclination. In others, salt instead of heat was diffused 
axially, eliminating thermal insulation as an experi- 
mental problem. The experimental data [l 1, 121 show 
the ratio of Nusselt numbers for opposite angles of 
inclination varying with angle and Rayleigh number. 
Values of the ratio reached as high as 106. 

Such high ratios are definitely not obtained along 
short, stacked cavities. In a recent series of experiments 
[12] with air and with water in vertical stacks of 
cavities resembling Venetian blinds, the Nusselt num- 
ber ratios obtained were of order 10, with a maximum 
value of 17. The results of the present analysis (which 
were partially reported in [ 121) explain why. The end 
effects of short cavities, and finite conduction between 
cavities, act markedly to reduce the natural convection 
asymmetry induced by opposite inclinations of the 
gravity vector. 

FORMULATION OF THE PROBLEM 

1. Governing equations 
The physical system consists of a Newtonian lluid in 

a cavity which forms a parallelogram with two vertical 
walls and two, arbitrarily inclined, parallel partition 
walls, as shown in Fig. 1. To formulate the problem it 
was assumed that : (a) the fluid motion and tempera- 
ture functions are 2-dim. ; (b) the fuid is viscous and 

FIG. 1. Geometry of a vertical stack of inclined cavities with 
isothermal walls. 

incompressible ; (c) frictional heating is neglible ; (d) 
the difference between the two constant temperatures 
on the vertical walls is small compared with l/p, and 
(e) fluid properties are constant except for density 
variation with temperature. Thus, four governing 
equations (two momentum, one energy and one 
continuity) are at hand : 

au au au 1 afJ 
~+uudx+lF-= -- - 

d y P ax 
+ gfl(T- T,)sina + vV%, (1) 

(70 7 all 1 ap :r+uE+LI-= -- - 
dY P aY 

4 &T- T”) cos CI + vV%, (2) 

dT a?- dT k, 

x +~~+a-=-V”T, 
ay PC, 

(3) 

and 

au +ko zi ay (4) 

where 

All variables in the above equations are made dimen- 
sionless by substituting the following variables into 
equations (l-4) : 

x’ = xJD, y’ = yJD, u’ = uDJv, 

us = vDJv, t’ = tv/D2, p’ = pD/pv2, (5) 

T’ = (T- T,)/(T, - T,). 1 

Dropping the primes, eliminating pressure terms be- 
tween the first two equations, and employing the 
stream and vorticity functions leads to: 

(6) 

dT dT I~T 1 

;it = - ax 
u--L+++V”T, 

dy 
(7) 

In order to facilitate the application of boundary 
conditions, which will be specified later, to the govem- 
ing equations, the x-y coordinates system was trans- 
formed to X-F coordinates, which can be called 
‘skewed’ or ‘parallelogrammic’ coordinates as shown 
in Fig. 2. Between the two coordinate systems, the 
following relationships of differential operators hold 
[13-J: 
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FIG. 2. Finite grid system and veto&y compon~t, V, normal 
to the plane x = lJ2. 

where n = 1 or 2 for the present problem. Transform- 
ing equations (6-9) into the new coordinate system 
yields : 

a( 1 l%j c?i a* a; -_c=--- --_-- 
dr COST i ax ay ap ax ! 

2. ~njrjul and ~uundur.~ ca~d~r~o~s 
Initially, the fluid in the cavity is stationary with a 

uniform temperature, an average value of the two wall 
temperatures : 

<=$=T=O everywhereat t=O. (14) 

The non-slip condition and global continuity require: 

I/I = z = Y = 0 
24 

on boundary walls. (15) 

And for temperatures on the isothermal walls: 

T(s = 0) = 1 and T(x = I) = - 1. (16) 

The iteration technique of the implicit boundary 
conditions for the temperature on the inclined par- 
tition walls and vorticity on the boundary walls will be 
shown later. 

Equations (1 l-13) represent the vorticity, energy. 
and stream-function equations in the x-gcoordinates 
plane. To solve them along with the boundary con- 
ditions, an explicit form of finite-difference approxi- 
mation was formulated. Figure 2 shows a finite grid 
system, where the problem domain is divided into 
M x N small paraIlelogrammic grids with dimensions 
Ax x A?, where Ax = l/M and A$ = i/(N ecos n). 

At every grid point of the inside domain, the 
governing equations approximated by finite difference 
forms should be satisfied at every time step. Time 
derivatives are approximated by forward differences, 
while spatial derivatives by central differences making 
equations (11) and (12) in to time-marching forms for 
vorticity and temperature solutions respectively. 
Equation (13) is approximated into a relaxation 
formula for stream function : 

;zj = iij + At X F’,(11/,<*Y”), (17) 

7;; = Tj + At x F&,7’), (18) 

(Il/i.jLv = tiij + w ' [F3($3il - $iJ* (19) 

where F,, F, and F, are functions of computed values 
of $, ; and 7: 

In order to minimize inaccuracy of the solution near 
the isothermal walls, where velocity and temperature 
gradients are high, subdivisions were made between 
j = 2 and 3 in Fig. 2. Details are shown in Table 1. 

NUMERICAL PROCEDURE 

1. Computational economization 
Numerical integration of the finite difference equa- 

tions leading to a steady solution wascarried out using 
a time increment, AC, for equations (17) and (I 8), and a 
relaxation factor, o, for equation (19) with static 
boundary conditions (15) and (16) and dynamic 
boundary conditions which will be specified later. 
Computing time was reduced considerably without 
sacrificing accuracy of the solution by taking advan- 
tage of the following: 

(a) C~lurac~eristics if ~~2~~20~~ ,~~ictiff?~s. If a func- 
tionf’(l, y) remains the same when x and y coordinates 
change their signs, the function is called an even 
function, but, if its sign only changes, it is called an odd 
function in the x-y plane. 

In the present problem, let the origin of X--Y 
coordinates be assumed to be at the center of the 
cavity, which is symmetric with respect to this point. 
Inspection of equations (11), (t2) and (13), boundary 
conditions (15) and (16), and implicit boundary con- 
ditions (28), (29) and (321, indicates that the vorticity, <, 
and stream function, $, can be treated as even 
functions while the temperature field as an odd 
function throughout the transient and steady flow 
regimes because initial conditions also meet the same 
characteristics of the functions. Therefore, in the 
present time integration, only half of the cavity is 
required for computation for a complete solution. A 
set ofnew boundary conditions at x = 1/2 + Ax, which 

Table 1. Finite grid mesh data 
- 

L/D N M AJ 4X AX’ 

5 10 20 0.1 .25 Ax/Z 
10 

:x 10 
26 0.1 0.3846 Ax/3 
40 0.1 0.5 AX/4 

HMT i‘s 2 - 
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replace those at x = [, can be computed in step-by-step 
manner : 

(ii.M12+Z)newB.C. = IN+2-i,M/Z 

((//i.M12+2)newB.C. = $N+2-i.M/2 

I 

(20) 

(Ti,M~2+2~newB.C. = - TN+2-i,M,Z 

where i = 1, 2, 3 . ., N + 1. 
(b) Computation of heat jlux along x = 1/2. If a 

calculation of overall heat flux between the two 
isothermal walls is made along one of the walls, its 
accuracy would heavily depend upon the grid size near 
the wall [13]. In order to calculate the heat flux 
accurately without having to have very small size of 
grid near the isothermal walls, the total heat flux was 
computed at x = l/2. The total heat flux per unit 
thickness along x = l/2 (Fig. 2) is: 

&,v = kf (Th - T,) 

x [ jF’@‘T- 2X=_dY]cdV (21) 

where k,( Th - T,) is dimensional. The first term in the 
integral represents the heat flux by convection and the 
second by conduction. If the heat flux is only by 
conduction then 

& = MT, - T,) ‘I (22) 

where 

? = - i-i‘:“*’ raX_ dj$ (23) 

The Nusselt number is defined as 

~~=~[,Td’cos’~r~T-~~~,,2d~~~l(24) 

3. Computation of implicit boundary conditions 
(a) Temperature on the tilted partition wall. The 

thickness, b, of the partition wall is assumed small such 
that heat conduction along the wall is negligible. Heat 
flux density crossing the partition wall is 

u -kb(Ta,j- ‘G+,j)/b. (25) 

From equations (10) and (25) we have 

( 

1 aT dT 

cosc( ajj F----anaz > l,jorN+*.j 

= Wk,U-, j - TN+ I J/b. (26) 

With the use of the Taylor series expansion, the 
temperature gradient at the bottom partition wall is 
approximated by 

f=f (L/D, a, Pr, Gr, Rc) orf (L/D, a, Pr, Ra, Rc). 
(33) =( - 3T,, + 4T,,j - T,J/2Ap. (27) 

This approximation is identical to fitting a second 
degree polynomial and taking the first derivative. degree to which two neighboring cavities are thermally 

The inclusion of Rc is necessary. It determines the . . 

Using expressions (25-27), the iteration formula for 
the bottom wall temperatures, TL ,j, is obtained : 

T,j =[B, TN+lJ +4T,,- T3j 

-BO,,j+, - T,.j-J/B,. (28) 
Similarly, for the top wall temperatures we have 

T N+l,j=[BlTl_j+4~j- TN-Id 

+ m~~+,~+, - T~~+~~-,JI/B,. (29) 

B,, B, and B, in the above two equations are constant 
coefficients containing Rc, ratio of conductances. 

(b) Vorticity on the boundary walls. The necessity of 
vorticity boundary condition calculation arises due to 
the elimination of pressure terms in equations (1) and 
(2). Integration of vorticity on the boundary walls 
should be done at every time step utilizing the known 
stream functions and vorticity values of the preceding 
time step. 

Taking terms up to the third order in the Taylor 
series expansion and using boundary condition (14), 
we can approximate $+- 1 at point B - 1 (Fig. 2) as: 

Considering the non-slir, conditions (1% and another ~ , 
relationship iB = - (a2$/dn2),, we obtain : 

1 
$B-, = - i 

B 

x 
x (Ax cosa)3 + - 

0 ap B 

Ax3 cos2 a sin a 
I 

. 

The final iterative forms of <a are: 

ie=B,$,-, +B,i,-, +B, 
ai 

(> GB 

at x =O’ 

rB=B,tia-~- +B,ia-l +B, at y=O B 

iB=B,+a-, +B,ia-,-B, at y = 1.. 
B 

(31) 

(32) 

where B,-B, are constant coefficients. The terms 
(ai/aj), and (a?Jax), in the above equations are 
approximated by central differences utilizing cB values 
of the previous time step. 

RESULTS AND DISCUSSION 

The numerical solution in terms of temperature, T, 
vorticity, [, stream function, JI, and the Nusselt 
number, Nu, is a function of several input parameters. 
The functional relationship of the solution function,f, 
is 
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coupled in equations (28) and (29). When Rc = 0, the 
partition walls are adiabatic. 

Due to the large number of controlling parameters, 
the number of values for each parameters was kept 
small. Those taken were: 

LID = 5, 10, 20, 

tl= 0, 520, &40, +50, 

Pr = 0.12, 4, 20, 

Gr = 2000,5000,10000, 

Rc = 0, 1, 10, 100. 

Computation is started with the initial conditions 
(14), and boundary conditions (15) and (16). The 
implicit conditions (28), (29) and (32) are subsequently 
used. Since the steady solution rather than the tran- 
sient is of the primary interest in this analysis, in most 
cases the data for the previously computed steady 
solution of a similar case were used for the initial state. 
It was confirmed by a few trial runs that the steady 
state solution is unique no matter what initial con- 
ditions are used. Time increments: 0.002 and 0.001 s 

were used throughout the entire computation. For 
cases of negative inclination (stably stratified fluid) the 
computing time took longer than for the opposite 
positively inclined cases. 

The Nusselt number is computed using equation 
(24) at x = l/2. The denominator r) should be 
computed in the absence of convection. These values 
were reported by Chung and Astill [13], and a part of 
them are tabulated in Table 2. 

Computed Nusselt numbers for several values of 
L/D, Rc, a, Pr and Gr are shown in Table 3. Pr = 0.72 
and 4.0 were selected for air and water respectively. In 
Fig. 3 the Nusselt numbers and their ratio y are 
presented for several values of Rc and CI. 

With adiabatic partition walls, the Nusselt numbers 
were extreme: the minimum and maximum at negative 
and positive angles of inclination respectively. The 
effect of finite wall conductance, Rc, is to increase Nu at 
negative inclinations and reduce Nu at positive 
inclinations. Consequently, the ratio of Nusselt num- 
bers, y, decreases with the increased Rc. 

The Nusselt number tends to decrease at angles 
beyond certain values, approximately + 25”. However, 
a similar Nusselt number does not necessarily mean 
less heat transfer between two isothermal walls be- 
cause of the presence of varying q in equation (24). 

Larger magnitudes of Nu and y can be obtained, as 
indicated in the figures, with smaller Rc and larger Ra. 
The aspect ratio, L/D, also is a dominant factor. 
Comparison of Nu data between the second (L/D = 10, 
Ra = 7200) and the fourth (L/D = 20, Ra = 3600) 

group of data in Table 3 (groups that would have the 
same Grashof number 10’ if D3 is used instead of D4/L 
in its definition) shows that Nuvalues for L/D = 20are 
as much as 85% larger than the corresponding values 
of L/D = 10. 

Isotherms and normalized streamlines of steady 
solutions for L/D = 10, Pr = 0.72 and Gr = 2000 are 
shown in Figs. 4 and 5 for several values of Rc and a. 
For the positive a there is one eddy, stationed at the 
center of the cavity, while for a I 0 there are two 
eddies, one near each isothermal wall. The effect of Rc 
is marked. Heat flux across the partition walls en- 
hances the convective heat transfer between the two 
isothermal walls when the inclination of the cavity is 
negative. On the other hand, it hinders the heat 
transfer considerably for positive angles ofinclination. 
The density ofisotherms near the isothermal walls, and 
the magnitude of the maximum stream functions, are 
strongly influenced by Rc values, as can be seen in 
these figures. 

Figure 6 shows relative magnitudes of heat flux 
crossing the partition wall for a= +40, 0, and -40” 
with Rc = 10. Since the hotter fluid tends to occupy 
the upper region of the cavity, the heat flux is almost 
everywhere upward across the partitions. For a = 
+40”, however, near the cavity corner the heat flux is 
downward. Close to the acute corner, the fluid is 
almost stagnant, achieving a higher temperature than 
the higher velocity fluid just below it, across the 
partition, 

It is interesting to see that magnitudes of heat flux 
across the partitions for both inclinations, a = +40, 
appear uniform and almost identical, but greater than 
that of a = 0” throughout the main length of cavity 

Table 2. Variation ofr] with aspect ratio, L/D, angle ofinclination, a, and ratio of 
conductances, Rc (based on non-convective conduction only [13]) 

LID RC a=0 20 40 50 

0 
5 1 0.4000 0.4290 

10 0.4000 0.4485 
loo 

0 
10 1 

10 
100 

0 
20 1 

10 
100 

0.4000 0.4064 

0.4000 0.4525 

0.2000 0.2017 
0.2000 0.2145 
0.2000 0.2242 
0.2000 0.2262 

0.1000 0.1003 
0.1000 0.1068 
O.lOm 0.1121 
0.1000 0.1131 

0.4323 0.4629 
0.5545 0.7130 
0.6578 0.9201 
0.6790 0.9628 

0.2084 0.2159 
0.2742 0.3499 
0.3284 0.4594 
0.3395 0.4813 

0.1023 0.1042 
0.1357 0.1733 
0.1642 0.2295 
0.1697 0.2406 
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Table 3. Nusselt numbers with variations of L/D, Pr, Gr, Rc and r 

L/D 10 
Pro.72 
Gr 2000 
Ra 1440 

Rc 

0 
1 

10 
100 

0 
1 

10 
100 

0 
1 

10 

1.046 1.251 1.885 3.783 8.163 13.533 15.402 
1.279 1.426 1.897 3.048 5.389 7.244 7.096 
1.444 1.528 1.789 2.289 3.092 3.700 3.633 
1.463 1.524 1.728 2.101 2.696 3.152 3.129 

L/D 10 
Pr 0.72 
Gr 10000 
Ra 7200 

1.191 1.531 3.578 17.439 32.722 34.664 37.878 
1.690 2.101 4.347 14.833 25.591 23.303 19.194 
2.454 2.934 5.100 11.507 17.362 14.256 11.527 
2.607 3.160 5.206 13.124 21.230 18.334 14.674 

L/D 20 
Pr 4.0 
Gr 2000 
Ra 8000 

1.027 1.361 3.635 19.143 36.948 41.907 44.666 
1.664 3.110 4.590 16.599 29.964 28.401 24.554 
2.519 3.020 5.480 13.124 21.230 18.334 14.674 

L/D 20 0 1.082 1.356 3.013 14.961 49.790 63.710 70.032 
Pr 0.72 1 1.556 1.900 3.540 11.613 33.338 37.389 32.437 
Gr 5000 10 2.109 2.421 3.726 7.979 17.263 19.388 17.500 
Ra 3600 100 2.236 2.519 3.722 7.072 14.098 16.258 14.174 

x=-50 -40 -20 0 20 40 50 

1./n = 10 0 
Pr = 0.72 

Gr = 104 

1 

0 = unsteady 

-50 -20 0 20 50 

Angle of inclination, =! 

F~ti. 3. Nusselt number, Nu, and the Nusselt number ratio, y. 
as a function of Rc and a (L/D = 10, Pr = 0.72, Gr = 104). 

except the cavity ends. Also, note that the heat flux 
crossing the partition wall is symmetric with respect to 
x = l/2. 

Examination of the streamlines indicates that the 
basic number of eddies is one or two (Fig. 7). A flow 
regime with three or more eddies can arise during 
transition from a one- to a two-eddy pattern, or from a 
two- to a one-eddy pattern. The multi-eddy patterns 
appear to be unstable, and to evolve into the one- or 
two-eddy pattern. Two-eddy patterns appear at neg- 
ative angles in general, whereas single eddies are 
present at positive angles. When L/D is large and Gr 

small, the convective eddy is weak with no discernible 
center of the eddy. In this case the convective flow is 
only in the axial direction, except in the end regime. 
With large value of Gr and L/D and a > 0, the long, 
central streamlines appear weakly oscillating in the 
calculation. This rippling streamline was observed in 
an experiment with smoke [12]. A schematic pre- 
sentation of these flow regimes in terms of streamline 

‘c a 

(h) Kc = 0 

FE. 4. Streamlines and isotherms (L/D = 10, Pr = 0.72. 
Gr = 2000, c( = - 40). 

(hi RC = 0 

FE. 5. Streamlines and isotherms (L/D = 10, Pr = 0.72, 
Gr = 2000. a = 40). 
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FIG. 6. Normalized heat flux across the tilted partition wall upward from the lower cavity (L/D = 10, 
Rc = IO). 

---- /--- 
_---- 5 
- 
- 
- 
- 
- 

1 -s 2 

- 
- 
- 

I - - - 4 
- 

d co d -0 d' 0 

FIG. 7. Schematic flow patterns and their locations on Gr-a 
plane. 

patterns is shown in Fig. 7. Rc influences the positions 
of eddies, but does not change the basic flow pattern. 

The Nusselt number is not very sensitive to changes 
in the Prandtl number, for constant Rayleigh number. 
A few points were calculated, and the results shown in 
Table 4. Nu increases slightly with Pr for a > 0, but 
stays almost constant for a < 0. Examination of the 
plots of stream function and temperature for the 
points in Table 4 (plots not shown here) indicate that 
for a constant Rayleigh number there is an approxi- 
mately inverse relation between Prandtl number and 
velocity, but little change in temperature with Prandtl 
number. 

Catton et al. [S] included Nusselt number data for a 
single rectangular cavity of L/D = 5, with the long 
walls insulated. The analysis was based on the Galer- 
kin method, with the Prandtl number assumed infinite. 
Their Rayleigh number was defined differently-when 
converted, their value of 1.8 x lo6 becomes compar- 

Table 4. Ddpendence of Nusselt number on Prandtl number 

(YD = 5) 

L/D Ra Rc Pr a=-20 a=20 a=20 

5 2880 0 0.72 2.309 4.845 8.093 
4.0 2.312 4.935 8.591 

20.0 2.310 4.863 8.621 

10 0.72 2.890 3.340 4.287 
4.0 2.414 3.410 4.514 

20.0 2.402 3.345 4.538 

able to the Pr = 20, Ra = 2880for data in Table 4. They 

obtained Nu = 1.9,4.2, and 5.5 for CI = - 30,0, and 
+20”, in good agreement with the results presented 
here, except for the + 20” value, which is about a third 
lower. 

One feature that turned up in this analysis is that for 
certain cases, solutions are of an unsteady nature, 
oscillating with constant amplitudes. Unsteady so- 
lutions occurred for cases with high Grashof numbers, 

large positive angles, and high Rc values. The three 
data points shown as open circles in Fig. 3 are 
averaged values of the Nusselt number for such 
oscillating flows. We suspect, for physical reasons, that 
these oscillations represent a real feature of the system 
rather than an artifact of the calculation procedure. 
More extensive numerical experiments on the 
unsteady-flow regime are underway in an attempt to 
resolve that question unambiguously. 
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CONVECTION NATURELLE DANS UN EMPILEMENT DE CAVITES INCLINEES ET EN 
FORME DE PARALLELOGRAMME 

Resum&On examine numeriquement la convection naturelle dans un empilement vertical de cavitts 
profondes, inclinees et en forme de paralltlogramme. Une mithode explicite aux differences finies pour 
l’ecoulement bidimensionnel est utilisee avec des conditions aux limites appropriees. Des nombres de Nusselt 
sont calculis pour differentes geometries, differents nombre de Prandtl, de Grashof et diverses conductances 
entre cavitees. Ces rtsultats analytiques foumissent une base de comparaison avec des mesures qui ont ett 
obtenues avec des murs “a un seul passage”. La procedure foumit aussi une base pour estimer le potentiel de 
telles structures a isolation asymetrique; une conclusion est que la conduction entre les cavitts riduit 

considirablement I’asymetrie dans le nombre de Nusselt global. 

FREIE KONVEKTION IN EINER SENKRECHTEN WAND AUS GESTAPELTEN 
SCHRAGEN, PARALLELOGRAMMFGRMIGEN ZELLEN 

Zusammenfassung-Es wird die freie Konvektion innerhalb einer senkrechten Wand aus langen, schrag 
angeordneten, parallelogrammformigen Zellen numerisch untersucht. Ein explizites finites 
DilTerenzenverfahren fur zweidimensionale Stromung wurde mit den zugehorigen Randbedingungen 
formuliert. Nusselt-Zahlen werden fur mehrere Geometrien, Prandtl-Zahlen, Grashof-Zahlen und Leitfahig- 
keiten zwischen den Hohlrtumen berechnet. Diese analytischen Ergebnisse liefem eine Grundlage fur 
Vergleiche mit Daten, die fur in einer Richtung warmeleitende Wlnde erzielt wurden. Das Verfahren liefert 
such eine Grundlage fiir die Abschltzung der Leistungsfahigkeit solcher thermisch asymmetrischen 
Isolationsstrukturen. Ein Ergebnis ist, dal3 Leitung zwischen den Hohlrlumen die erzielbare Asymmetrie der 

Warmedurchgangszahl erheblich reduziert. 

ECTECTBEHHAJI KOHBEKHMII B BEPTMKAJIbHOM HA6OPE HAKJIOHHbIX 
IlOJIOCTEn B mOPME IIAPAJIJIEJIOFPAMMOB 

Annoraqnn - %C,,eHHO HccnenyeTca eCTeCTBeHHal KOHBeKUWR BHyTpH BepTHKaJlbHOrO Ha6opa AJIHH- 
HbIX HaK,IO"HblX nonocTeit,EiMeiowix @OpMy napannenorpaMbioe.C~opMynapoeaua IlBHaR KOHeVHO- 

pa3HOCTHaR CxeManm flByXMepHOI'0 nOTOKa BMeCTe C COOTBeTCTByiOUlHMll rpaHU%bIMH yCIIOBiiRMH. 

3HareHsn wcna Hyccenbra paccruTanbt n.na pa3nmnibtx reouerpeii, suaqeuuii wcen Hpannrna, 
~paCrO~aHKO?~@i~HeHTOB TenJIOrlpOBOLlHOCTH MGKAy nOJlOCTIIMW. nonyqeHHble pe3yJIbTaTbl no3BO- 

JIRKJT nposecTu CpaeHeHue c naHHbIMU no ((OnHOCTOpOHHHM)) HarpeTbIM CTeHKaM. MeTOA TaK)I(e 

no3BonneT npoBeCTw OueHKy nOTeHUUanbHbIX 903MO~HOCTeii EiCnOJIbSOBaHUI TaKWX HeCHMMeTpWlHbIX 

uaonupyIouJax CTpyKTyp; CneJIaH BblBOIl 0 TOM, 9TO TenJlOnpOBOnHOCTb MeW,y FlOJlOCTllMH 'SHaWl- 

Te,,bHO yMe"blllaeT aCHMMeTpW0 BCFJJHHX YBCJlaX HyCCenbTa. 


